
Lottery Pools: Winning More by Interpolating Tickets without Increasing
Training or Inference Cost

Lu Yin,*1 Shiwei Liu,*12† Fang Meng, 3 Tianjin Huang,1 Vlado Menkovski, 1 Mykola Pechenizkiy 1

1 Eindhoven University of Technology
2 University of Texas at Austin
3 The University of Liverpool

Abstract

Lottery tickets (LTs) is able to discover accurate and sparse
subnetworks that could be trained in isolation to match the
performance of dense networks. Ensemble, in parallel, is
one of the oldest time-proven tricks in machine learning to
improve performance by combining the output of multiple
independent models. However, the benefits of ensemble in
the context of LTs will be diluted since ensemble does not
directly lead to stronger sparse subnetworks, but leverages
their predictions for a better decision. In this work, we first
observe that directly averaging the weights of the adjacent
learned subnetworks significantly boosts the performance
of LTs. Encouraged by this observation, we further propose
an alternative way to perform an “ensemble” over the
subnetworks identified by iterative magnitude pruning via
a simple interpolating strategy. We call our method Lottery
Pools. In contrast to the naive ensemble which brings no
performance gains to each single subnetwork, Lottery Pools
yields much stronger sparse subnetworks than the original LTs
without requiring any extra training or inference cost. Across
various modern architectures on CIFAR-10/100 and ImageNet,
we show that our method achieves significant performance
gains in both, in-distribution and out-of-distribution scenarios.
Impressively, evaluated with VGG-16 and ResNet-18, the
produced sparse subnetworks outperform the original LTs by
up to 1.88% on CIFAR-100 and 2.36% on CIFAR-100-C; the
resulting dense network surpasses the pre-trained dense-model
up to 2.22% on CIFAR-100 and 2.38% on CIFAR-100-C.

Introduction
Deep neural networks (DNNs) have revolutionized various
machine learning fields with expressive performance (Le-
Cun et al. 1989; Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2014; He et al. 2016; Silver et al.
2016; Dosovitskiy et al. 2020; Brown et al. 2020; Radford
et al. 2021; Fedus, Zoph, and Shazeer 2021; Jumper et al.
2021). While achieving increasingly compelling results, a
large concern is the massive parameter count that in billions,
even trillions resulting heavy burden on environmental and
financial systems (Garcı́a-Martı́n et al. 2019; Schwartz et al.
2020; Patterson et al. 2021). That motivates many techniques
toward the efficiency of DNNs. Among them, sparsity is a

*These authors contributed equally.
†Corresponding author: Shiwei Liu, s.liu3@tue.nl

leading approach that largely preserves the model perfor-
mance while achieving appealing compression rates (Mozer
and Smolensky 1989; Han, Mao, and Dally 2015; Molchanov
et al. 2016; Liu et al. 2022). A recent work on the Lottery
Tickets (LTs) (Frankle and Carbin 2018) discovers the ex-
istence of sparse subnetworks within a standard network
which can be trained in isolation to match the accuracy of
the dense counterpart. These lottery tickets are empirically
obtained by iterative magnitude pruning (IMP) at the random
dense initialization or early training points called “rewind-
ing” (Frankle et al. 2020). Since being proposed, LTs has
become the leading approach to reduce model size while
preserving accuracy.

However, LTs is a rather costly process involving multiple
iterations of pruning-and-retraining, and once the subnet-
works at the target sparsity are reached, the previous subnet-
works with lower sparsity are commonly discarded, leading
to a big waste of computation. One of the traditional ways that
can directly benefit from multiple models in machine learning
is ensemble. Ensemble (Hansen and Salamon 1990; Levin,
Tishby, and Solla 1990; Fort, Hu, and Lakshminarayanan
2019) is well-known for its compelling performance improve-
ments over independently trained, single networks by com-
bining the predictions of the latter. Yet, ensemble does not
directly lead to stronger sparse subnetworks but leverages
their predictions to make a better decision. Hence, the bene-
fits of ensemble in the context of LTs will be diluted.

In this paper, we build an efficient and accurate alter-
native to the naive LTs ensemble that yields subnetworks
outperforming the original LTs by a large margin in both,
in-distribution and out-of-distribution scenarios. We first ob-
serve that directly interpolating weights of the adjacent LTs
subnetworks improves the performance of LTs. Inspired by
this observation, we sequentially interpolate the weights of
the natural “byproducts” of LTs (i.e., the previous subnet-
works identified by IMP) with the target subnetwork if they
improve accuracy on held-out data, following the recent
emerging weight averaging techniques (Izmailov et al. 2018;
Wortsman et al. 2022; Rame et al. 2022). This simple interpo-
lating step is able to produce much stronger sparse and dense
networks, without incurring any additional training and infer-
ence costs. We call our approach “Lottery Pools”1. Unlike the

1Lottery pools refers to a group of people who purchase lottery

ar
X

iv
:2

20
8.

10
84

2v
2

 [
cs

.L
G

]
 3

 S
ep

 2
02

2

original LTs, Lottery Pools harnesses the advantage of all the
LTs subnetworks, in turn, to further boost the performance
of each of them. This property significantly increases the
utility of the identified subnetworks compared with the orig-
inal LTs, where the previous well-learned subnetworks are
usually discarded. Overall, our contributions are summarised
as follows:

• Simple weight interpolation between two adjacent
subnetworks boosts performance of LTs. We surpris-
ingly find that adjacent subnetworks of LTs can be linearly
interpolated or even averaged into a single subnetwork
with higher accuracy while maintaining the same sparsity
(shown in Figure 1).

• Towards stronger LTs subnetworks. Encouraged by
the above observation, we propose Lottery Pools that
selectively interpolate multiple subnetworks into a sin-
gle subnetwork. Lottery Pools is able to construct
stronger subnetowrks with much higher accuracy, while
maintaining the original sparsity level. Simple as it is, we
show that Lottery Pools (Interpolation) surpasses the origi-
nal LTs by 1.88% and 1.72% on CIFAR-100 with VGG-16
and ResNet-18 respectively.

• Towards stronger dense networks. Besides the im-
proved sparse subnetworks, we can also construct a
stronger dense network by averaging the LTs tickets back
to the pre-trained dense networks. Our reinforced dense
network outperforms the original dense ResNet-18 by
2.22% and the original dense VGG-16 by 1.69% on
CIFAR-100.

• Towards Stronger in-distribution and out-of-
distribution performance. Thanks to the “ensemble”
property of Lottery Pools, the enhanced (sub)networks
enjoy a remarkable performance gain over the original
LTs/dense model in both in-distribution (ID) predictive
accuracy and out-of-distribution (OoD) robustness.

Related work
Lottery ticket hypothesis. Lottery ticket (LTs) (Frankle and
Carbin 2018) conjectures that there exists sparse subnetworks
called winning tickets within a dense network, whose perfor-
mance can match with the dense network when training from
the same initialization. Later, weight/learning rate rewind-
ing techniques (Frankle et al. 2020; Renda, Frankle, and
Carbin 2020) was proposed to scale up LTs to larger net-
works and datasets. Evci et al. (2022) demonstrates that train-
ing LTs solutions with the same initialization converge to
the same basin as the original pruning method that they are
derived from. LTs has inspired many follow-up work to un-
derstand and extend LTs. Zhou et al. (2019); Ramanujan et al.
(2020) successfully found winning tickets at the initializa-
tion even without training. Morcos et al. (2019) unveiled that
the winning tickets discovered using larger datasets consis-
tently transferred better than those generated using smaller

tickets together to get better odds of winning a lottery. We borrow
this concept to highlight that we combine (interpolate) multiple LTs
subnetworks into a stronger one with higher accuracy.

datasets. Besides the original imagenet classification (Fran-
kle and Carbin 2018), the existence of winning tickets have
been broadly verified under diverse fields, such as natural lan-
guage processing (Gale, Elsen, and Hooker 2019; Chen et al.
2020), generative adversarial networks (Chen et al. 2021),
and reinforcement learning (Yu et al. 2019). Unlike LTs, Lot-
tery Pools takes advantage of all the sparse subnetworks to
construct stronger subnetworks without increasing any extra
training or inference time.

Weight averaging. Model weight averaging has been
widely studied in convex optimization and neural net-
works (Ruppert 1988; Polyak and Juditsky 1992; Zhang et al.
2019). Stochastic Weight Averaging (SWA) (Izmailov et al.
2018) and Exponential Moving Average (EMA) (Polyak
and Juditsky 1992) average checkpoints along a single
optimization trajectory and can roughly match the prediction
ensemble performance. Yin et al. (2022) futher generated
SWA in the context of sparse training without any pretraining
steps. Greedy soup (Wortsman et al. 2022) averages
independent dense models across different runs, providing
notable improvements.

Weight interpolation, as a more general case of weight
averaging, draws explosive interest from the community re-
cently. Nagarajan and Kolter (2019) empirically observed
that there exists a linear path between the solutions learned
on MNIST dataset with the same initialization. Neyshabur,
Sedghi, and Zhang (2020) shown that two models fine-tuned
from the same pre-trained model can be linearly connected to
match the performance of the single model. Wortsman et al.
(2022) proposed learned soup recipe that learns model inter-
polation by AdamW (Loshchilov and Hutter 2017). Weight
interpolation has also been adopted to improve the accu-
racy of the patching task without compromising accuracy
on the supported tasks and transfer learning (Ilharco et al.
2022). Frankle et al. (2020) introduced linear mode connec-
tivity to study the instability of neural networks to the SGD
noise introduced during training. They demonstrated that
sparse subnetworks discovered by LTs can match the perfor-
mance of the dense network only when they are stable to SGD
noise. Following Frankle et al. (2020), we discover that two
linearly connected subnetworks can be interpolated, leading
to a more accurate subnetwork without any extra costs.

Ensemble. Ensembles (Hansen and Salamon 1990; Levin,
Tishby, and Solla 1990) of neural networks have received
large success in terms of the in-distribution accuracy (Perrone
and Cooper 1992; Breiman 1996; Dietterich 2000), uncer-
tainty estimation (Lakshminarayanan, Pritzel, and Blundell
2017; Wen, Tran, and Ba 2020), and out-of-distribution ro-
bustness (Ovadia et al. 2019; Gustafsson, Danelljan, and
Schon 2020). Very recently, Liu et al. (2021) proposed an
efficient ensemble framework that combine the predictions
of multiple individual subnetworks, surpassing the gener-
alization performance of the naive ensemble. Nevertheless,
ensemble requires performing a forward pass for each model,
leading to extra costs.

Methodology
In this section, we introduce “Lottery Pools”, a simple weight
interpolation approach that constructs more accurate subnet-

Table 1: The primary methods contrasted in this work. θ̃ is
a subnetwork learned by IMP from different iteration. Cost
refers to the memory and compute requirements during infer-
ence relative to a single model. All methods require the same
training.

Method Formulation Cost

Lottery Tickets f(x; θ̃) O(1)
Naive Ensemble 1

k

∑k
i=1 f(x; θ̃k) O(k)

Lottery Pools Algorithm 2 O(1)

Algorithm 1: Pseudocode of LTs

Require: Randomly initialization network θ ∈ Rd, binary
maskm, IMP iterations T , training steps used for rewind-
ing j, pruning rate p.

1: Train θ to completion; save the weights at j steps θj .
2: for pruning iteration t ∈ {1, . . . , T} do
3: Prune the lowest magnitude p of weights and update

mask mt.
4: Train mt � θj to completion.
5: end for

works than LTs, without requiring any extra training or in-
ference cost. Different from previous works on interpolation,
our goal is to boost the performance of LTs subnetworks
(including the pre-trained dense network) while maintaining
their desirable sparsity.

We first recap the concept of the lottery ticket hypothe-
sis. Then, we show that directly averaging LTs subnetworks
identified at two adjacent IMP iterations leads to stronger
subnetowrks. Finally, we introduce our Lottery Pools, which
is able to improve the accuracy of the original LTs by interpo-
lating subnetworks obtained across different IMP iterations.

Recapping the lottery ticket hypothesis. The lottery
ticket hypothesis (Frankle and Carbin 2018) indicates that
there exist subnetworks (winning tickets) within dense net-
work initialization such that those lottery tickets could be
trained in isolation to the matching performance of their
dense counterparts.

To be specific, we denote neural network with parameters
θ ∈ Rd as f(x;θ), after j steps of training, there exists
a sparse subnetwork characterized by the binary mask m
such that f(x;m � θj) will performs as well as f(x;θ)
after training. The initial results show LTs hold when the
subnetwork is trained with the original initialization, i.e. j =
0. Later results (Frankle et al. 2020) state a rewinding step to
a pre-train point (j > 0) is required on larger datasets. The
overall training procedure of LTs is given in Algorithm 1.

Simple weight averaging boosts the performance of
LTs. Recently, the work on model soup (Wortsman et al.
2022) shows that averaging models fine-tuned from the same
pre-trained model provides substantial performance improve-
ments. Since the LTs subnetworks at different sparsities are
also fine-tuned from the same pre-trained dense model, we
hypothesize that these subnetworks can also be averaged for
better performance.

Let’s us simplify the sparse subnetwork parameters under

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

64

66

68

70

72

74

(a) ResNet-18 w/ Rewinding

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

15

30

45

60

(b) ResNet-18 w/o Rewinding

Figure 1: Accuracy heat map of the averaged LTs on CIFAR-
100. Each cell refers to the test accuracy of the averaged
subnetworks using the LTs under the sparsity of X-axis and
Y-axis. If the averaged subnetwork decreases in sparsity, we
prune it to the higher sparsity of its parents.

a mask mt � θ as θ̃ for simplicity. To verify our hypothesis,
we average two LTs subnetworks with different sparsities
(assuming sparsity of θ̃1 is higher than sparsity of θ̃2) across
all the learned subnetworks, i.e., θ̃1+θ̃2

2 . To address the spar-
sity decrease caused by average, we further use magnitude
pruning θ̃1+θ̃2

2 to the same sparsity as θ̃1 following (Yin et al.
2022). We consider two widely used settings for LTs: with
rewinding and without rewinding. We report the results of
ResNet-18 on CIFAR-100 within a heat map in Figure 1 and
put the results of VGG-16 in Appendix.

As we can see, rewinding matters for the improved perfor-
mance of weight averaging. With rewinding, simple averag-
ing subnetworks from nearby IMP iterations could achieve
better performance than the original LTs subnetworks (the
diagonal cells), and the closer two subnetworks are located,
the larger performance gain the averaged subnetworks tend to
achieve. In stark contrast, we observe a significant accuracy
drop without rewinding, across all sparsities. This observa-
tion is in line with the findings from Frankle et al. (2020) that
large-scale settings are unstable to SGD noise at initialization
according to linear interpolation. Thereby, we confirmed that
our hypothesize holds with the context of rewinding.

Lottery Pools
Inspired by the above observation, we introduce Lottery
Pools, a simple weight interpolation approach on LTs that
leverages the subnetworks obtained across different IMP it-
erations. Lottery Pools has two key ideas: (1) Interpolating
weights instead of simply averaging; (2) Sequentially search-
ing over all the candidate LTs subnetworks and coefficients
for interpolation.

Firstly, Lottery Pools goes beyond weight averaging and
probes a more general variant of weight connection – weight
interpolation. Linear weight interpolation has been previ-
ously used to study dense networks (Nagarajan and Kolter
2019; Neyshabur, Sedghi, and Zhang 2020). Here, we adopt
it to improve the accuracy of sparse LTs subnetworks. We
follow (Frankle et al. 2020) and determine that two LTs sub-
networks are linear mode connected if there exists a linear

Algorithm 2: Lottery Pools Interpolation Recipe

Input: The original learned sparse subnetwork θ̃t from LTs, Candidate Lottery Pools St = {θ̃t-1, θ̃t+1, θ̃t+2, · · · }, Candidate
Coefficient Pools Sc = {α1, . . . , αn}, The interpolated subnetwork θ̃Inter during greedy search.
Output: Final interpolated subnetwork θ̃best has the same sparsity with θ̃t.

1: St ← {θ̃t-1, θ̃t+1, θ̃t+2, · · · } . Create Candidate Lottery Pools, and sort all candidates by their adjacence to θ̃t

2: Sc ← {α1, . . . , αn} .Create Candidate Coefficient Pools
3: θ̃best ← θ̃t

4: for θ̃i ∈ St do . Greedily search the candidate LTs subnetworks for interpolation
5: αbest ← argmaxj ValAcc

(
MagnitudePruning

(
αj θ̃best + (1− αj)θ̃i

))
, αj ∈ Sc .Search for the best coefficient

6: θ̃Inter ← MagnitudePruning
(
αbestθ̃best + (1− αbest)θ̃i

)
.Interpolating using αbest

7: if ValAcc
(
θ̃Inter

)
≥ ValAcc

(
θ̃best

)
8: then θ̃best ← θ̃Inter .Update the best interpolated subnetwork
9: end for

0

20

40

60

Ac
cu

ra
cy

 %

VGG-16/CIFAR-100

0

25

50

75
ResNet-18/CIFAR-100

10
0.080
.0

64
.0

51
.2

41
.0

32
.8

26
.2

21
.0

16
.8

13
.4

10
.7 8.6 6.9 5.5 4.4 3.5

2

4

Lo
ss

10
0.080
.0

64
.0

51
.2

41
.0

32
.8

26
.2

21
.0

16
.8

13
.4

10
.7 8.6 6.9 5.5 4.4 3.5

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Without rewinding With rewinding

Figure 2: Liner interpolation between learned subnetworks
from dense network to extremely low density.

path between them. The two subnetworks thus could be inter-
polated for accuracy improvement. The subnetwork created
by interpolating is given by:

θ̃inter = αθ̃1 + (1− α)θ̃2 (1)
We argue that directly averaging two subnetworks (α = 0.5)
might not be the optimal option, since the local linearly-
connected minimum may lie in the sides of the linear path
rather than in the right middle. To prove this, we linearly
interpolate two adjacent LTs subnetworks, with various coef-
ficient α ∈ [0, 1]. We set the increments of α as 0.1 to create
9 interpolated subnetworks between two LTs subnetworks.
The test loss/error are reported in Figure 2. The best accuracy
is achieved at the middle points of the linear path in most
cases (the middle part of the green lines) with exceptions at
the highest and lowest sparsities (the endpoints of the green
lines) where weight average achieves no better accuracy than
interpolation. Again, interpolation without weight rewinding
(yellow lines) fails to find such linear paths between two
subnetworks.

Moreover, Figure 1 and 2 present that the accuracy of the
interpolated subnetworks varies across different subnetworks
pairs and different interpolation coefficients. While it is possi-

ble to adopt gradient based optimization to learn the optimal
subnetworks and coefficients, the cost is rather expensive. We
instead choose a more practical way: greedily searching for
interpolated subnetworks and the corresponding coefficients.
Given a target LTs subnetwork θ̃t learned at the t iteration
of IMP, we sequentially interpolate it with the rest of the
subnetworks (Candidate Lottery Pools). For each each can-
didate subnetwork, we search the best coefficients α over 11
candidates from 0.05 to 0.95 (Candidate Coefficient Pools).
Please refer to Appendix for more details. We only keep
the incoming subnetwork for interpolation if its accuracy on
held-out set does not decrease.

Instead of loading all the candidate subnetworks in the
memory (Wortsman et al. 2022), we apply a more memory-
friendly search approach. Specifically, we iteratively interpo-
late one of the subnetworks in the Candidate Lottery Pools
with our target subnetwork θ̃t and let the resulting subnet-
work being our new target subnetwork, i.e. θ̃t ← θ̃inter,
until we have searched all the subnetworks. This operation
allows us to accomplish the interpolation operation across
all the candidate subnetworks by maintaining only one extra
copy of the interpolated weights.

To summary, Lottery Pools is a two-step procedure for
constructing stronger LTs subnetworks. Step 1: Perform the
standard Lottery Tickets method; Step 2: Linearly interpo-
late the original LTs subnetowrks to produce stronger sparse
subnetworks. Please note that we adopt magnitude weight
pruning to remove the weights with the smallest magnitude
after each interpolation to maintain the same sparsity level as
the original LTs.

Experiments
To verify the effectiveness of Lottery Pools, we evaluate
it with three popular model structures VGG-16, ResNet-18
and ResNet-34 on various datasets, including CIFAR-10 and
CIFAR-100 and ImageNet.

Experiments setup. Since our method directly performs
weight interpolation over the subnetworks produced by LTs
rewinding, our most direct baseline is the standard LTs
rewinding. Following the common rewinding setting used

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
70

71

72

73

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
72

74

76
ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

93.0

93.5

94.0

 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

94.0

94.5

95.0

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Orignial Lottey Tickets Lottery Pools (Interpolation) Lottery Pools (Average) Dense Network

(a) Test accuracy % of the original LTs and Lottery Pools on CIFAR-10/100.

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

65

70

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

65

70

75

ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
92

93

94

 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

93

94

95

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Lottery Pools (Interpolation) SWA EMA(0.95)

(b) Comparison with the strong weight averaging baselines: SWA and EMA.

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

44

46

48

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
44

46

48

50
ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

73

74

75

76
 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

74

76

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Orignial Lottey Tickets Lottery Pools (Interpolation)

(c) Test accuracy % of the original LTs and Lottery Pools on CIFAR-10-C and CIFAR-100-C.

Figure 3: Evaluation of Lottery Pools.

Table 2: Implementation details, including: IMP iteration
count, the rewinding epochs, and learning rate (LR), batch
size (BS), learning rate drop (LR Drop), training epochs
(Epoch), etc.

Network Dataset Epoch BZ LR LR Drop, Epochs Warmup Rewinding IMP interations

ResNet-18 CIFAR-10/100 182 128 0.1 10x, [91, 136] - 9 Epochs 19

VGG-16 CIFAR-10/100 182 128 0.1 10x, [91, 136] - 9 Epochs 19

ResNet-18/34 ImageNet 90 1024 0.4 10x, [30,60,80] 5 Epochs 5 Epochs 9

in Frankle et al. (2020); Chen et al. (2020), we rewind the
LTs roughly to the 5% training time. We summarize the im-
plementation details for LTs in table 2. To highlight the per-
formance difference between weight interpolation and weight
averaging, we implement two variants of Lottery Pools: Lot-
tery Pools (Interpolation) and Lottery Pools (Average), the
latter applies directly averaging instead of interpolation in
the second step of Lottery Pools. The results are illustrated
in Figure 3(a). All the reported results are averaged over 3
independent runs.

Comparison with the original LTs. Overall, we see a

clear performance gain from Lottery Pools over the origi-
nal LTs under different sparsity levels (including the dense
network), and Lottery Pools (Interpolation) achieves better
performance than Lottery Pools (Average) due to the searched
optimal interpolation value. Impressively, Lottery Pools (In-
terpolation) achieves up to 1.88% and 1.72% accuracy in-
crease over the original LTs with VGG-16 and ResNet-18
on CIFAR-100, respectively. Even on the relatively more sat-
urated CIFAR-10, we still observe up to 0.93% and 1.05%
performance gains with VGG-16 and ResNet-18. We high-
light that Lottery Pools also outperforms LTs in even extreme
sparse situations. For instance, Lottery Pools brings 0.81%
higher accuracy over the LTs with VGG-16 on CIFAR-100
and 0.6% higher accuracy on CIFAR-10, with only 1.8%
weights. It is quite encouraging to see that Lottery Pools can
still improve performance when the interpolating space is
extremely small. Besides, by averaging the learned LTs sub-
networks back to the pre-trained dense model, Lottery Pools
(interpolation) could also construct stronger dense networks,
which outperform the original dense ResNet-18 by 2.22%

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

71

72

73

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

74

76
ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

93.5

94.0

 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

94.5

95.0

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

4 models (25%) 9 models (50%) 19 models (100%)

Figure 4: Test accuracy % of different candidate model count.

32
.8

21
.0

13
.4 8.6 5.5 3.5 2.2

70

71

72

73

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

32
.8

21
.0

13
.4 8.6 5.5 3.5 2.2

72

74

76
ResNet-18/CIFAR-100

32
.8

21
.0

13
.4 8.6 5.5 3.5 2.2

93.6

93.8

94.0

94.2
 VGG-16/CIFAR-10

32
.8

21
.0

13
.4 8.6 5.5 3.5 2.2

94.5

95.0

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

1 values 3 values 7 values

Figure 5: Test accuracy % of different candidate interpolation coefficient count.

and the original dense VGG-16 by 1.69% on CIFAR-100.
We report the results with ResNet-18/34 on ImageNet in Ap-
pendix due to the limited space, where Lottery Pools also
consistently outperforms LTs.

Comparison with weight averaging baselines. We fur-
ther compare our method with two strong weight averaging
baselines: SWA and EMA. SWA (Izmailov et al. 2018) aver-
ages the weights of multiple networks along a single optimiza-
tion trajectory. By setting the averaging coefficient to 1

n+1
where n is the current model number, it achieves the same
results of averaging across all the models while maintaining
the memory consumption as just two DNNs. The exponential
moving average (EMA) (Polyak and Juditsky 1992; Kingma
and Ba 2014; Karras et al. 2017) average the weights of a se-
ries of models exponentially using a fixed decay factor, which
was set to 0.95 in this experiment. As these baselines are all
designed for dense model averaging, same as Lottery Pools,
we alter EMA and SWA by pruning the interpolated model
to the sparsity of the original LHs during interpolating. In
fact, both SWA and EMA could be regarded as special cases
of linear interpolation that use specific averaging coefficients
and decay factors for weight interpolating.

As shown in Figure 3(b), our method clearly outperforms
the other baselines by a large margin, especially in high sparse
situations. That apparently comes from two possible reasons.
Firstly, EMA and SWA use pre-chosen coefficient values,
which might not generate all the subnetworks, whereas Lot-
tery Pools searches for the optimal values for each subnet-
work. Secondly, Lottery Pools greedily searches for potential
subnetworks to interpolate, which can eliminate the negative
effects of subnetworks that are adding networks within the
different loss basins for interpolation.

Out-of-distribution robustness. Beyond the in-
distribution accuracy, we highlight that Lottery Pools also

improves the performance of LTs in the OoD scenario. We
train Lottery Pools with standard CIFAR-10 and CIFAR-100
and test it on CIFAR-10-C and CIFAR-100-C, respectively.
As shown in Figure 3(c), Lottery Pools improves the OoD
robustness than the original LTs by a large margin with both
dense and sparse subnetworks. Remarkably, it improves
the dense ResNet-18 by 2.38% on CIFAR-100, and by
2.12% with VGG-16 on CIFRA-10. For sparse subnetworks,
Lottery Pools achieves up to 2.27% performance gain with
VGG-16, and 2.36% with ResNet-18 on CIFAR-100. This
result indicates that our interpolated subnetworks is able to
inherit the appealing properties of model ensemble, e.g.,
good OoD robustness.

Extensive Analysis
Candidate lottery pools count. In this section, we study
how the number of candidate tickets count, i.e., ‖St‖0 affects
the achieved model’s performance. In the main experiment
section we take advantage of all the learned networks across
different IMP iterations for interpolation. Here, we alter the
count of networks in St as 4, 9, 19, which represents 25%,
50%, 100% total number of possible networks. All the net-
works are still sorted in the order of the adjacency to the
target lottery tickets in St. The results are shown in Figure 4.
Not surprisingly, more candidate tickets tend to yield better
performance in general. Besides, the performance gap be-
tween different Candidate Lottery Pools count in the dense
model is more significant than in the sparse situations.

Candidate interpolation coefficient count. Here, we
study how the interpolation coefficient count affects the
Lottery Pool’s performance. Intentionally, more candidates
would be more likely to provide a proper coefficient by
searching and thereby gain larger performance improvements.
To confirm this hypothesis, we compare Lottery Pools using

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
0

25

50

75
Ac

cu
ac

y
(%

)
VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
0

25

50

75
ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
0

50

100
 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

25

50

75

100
ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Prune during (ours) Prune after
Figure 6: Comparison between prune after interpolating and prune during interpolating.

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8
71

72

73

74

Ac
cu

ac
y

(%
)

VGG-16/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

74

76

ResNet-18/CIFAR-100

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

93.50

93.75

94.00

 VGG-16/CIFAR-10

10
0.064

.0
41

.0
26

.2
16

.8
10

.7 6.9 4.4 2.8 1.8

94.5

95.0

ResNet-18/CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Output Ensemble Lottery Pools (Interpolation)
Figure 7: Comparison between Lottery Pools and the output ensemble.

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

0.00

0.05

0.10

0.15

0.20

0.25

(a) VGG-16/CIFAR-100

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

0.00

0.05

0.10

0.15

0.20

0.25

(b) ResNet-18/CIFAR-100

Figure 8: Prediction disagreement between lottery tickets at
the different sparsity levels. Each block in the heatmap shows
the fraction of labels on which the predictions from different
lottery tickets disagree.

different candidate coefficient counts, including 1 (α =[0.5]),
3 (α=[0.05, 0.5, 0.95]), 7 (α=[0.05,0.1,0.3,0.5,0.7,0.9,0.95]).
Therefore, when using coefficient count is 1, Lottery Pools
scales to Lottery Pools (Average). The results are illustrated
in Figure 4. Lottery Pools (Average) with 1 candidate (yellow
lines) achieves the lowest accuracy in general, compared the
settings with more candidates, due to its limited search space.
Lottery Pools with 7 candidates outperforms the one with 3
candidates, but only with marginal gains.

When to prune. We study when to prune the interpolated
subnetwork to target sparsity. In the default setting of Lottery
Pools, we perform the pruning operation every once when
we interpolated a subnetwork during the greedy search (line
5, 6 in Algorithm 2), which we called prune during. An-
other option would be first greedy interpolate all the searched
subnetworks and then prune the achieved subnetwork to the
target sparsity, namely prune after. We compare these two

methods in Figure 6. As we can see, the performance of prune
after drops dramatically at the high sparsity while prune dur-
ing keeps a steady high accuracy across all the sparsities.
The reason might be in prune after, we greedy search for
the best un-pruned interpolated networks regardless of their
performance at the target sparsity. Whereas the prune during
operation in greedy search keeps the interpolated networks
always having good performances at desirable sparsity level.

Comparison with output ensemble. This section com-
pares the performance of Lottery Pools with the output en-
semble, i.e. averaging the digit of various subnetworks for
inference (Huang et al. 2017; Garipov et al. 2018). For every
learned subnetwork from IMP, we collect the other two identi-
fied subnetworks from most adjacent iterations to perform the
Lottery Pools and output ensemble. The results are reported
in Figure 7. As we can see, our Lottery Pools could match
the performance of the output ensemble, with no additional
computational cost or memory relative to a single subnetwork
during inference.

Diversity analysis. We plot the prediction disagreement
matrix across the learned subnetwork from IMP across dif-
ferent iterations in Figure 8. We can see that the LTs subnet-
works behave similarly to their neighbor subnetworks with
small prediction disagreement, and such disagreement grad-
ually increases as their distance becomes larger and larger in
the context of IMP. The results could explain the phenomena
of Figure 1 as a larger diversity indicates it is more likely
that the subnetwork are located in the different basins, where
weight interpolation does not provide satisfactory perfor-
mance (Neyshabur, Sedghi, and Zhang 2020; Yin et al. 2022).

Conclusion
In this paper, we explore a new perspective to leverage the
existing learned LTs subnetworks by interpolation. We call

this approach Lottery Pools. Without increasing training or
inference cost, a network can be identified with significant
performance improvements for in- and out-distribution sce-
narios. Impressively, Lottery Pools is capable of creating not
only stronger subnetworks that maintain the original LTs spar-
sity level but also stronger dense networks. Extensive experi-
ments verify the effectiveness of Lottery Pools across various
network architectures with VGG-16 and ResNet-18/34 on
CIFAR-10/100 and ImageNet.

Acknowledgments This work used the Dutch national e-
infrastructure with the support of the SURF Cooperative
using grant no. NWO-2021.060.

References
Breiman, L. 1996. Bagging predictors. Machine learning,
24(2): 123–140.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.;
Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter, C.; Hesse,
C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.;
Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever,
I.; and Amodei, D. 2020. Language Models are Few-Shot
Learners. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M. F.; and Lin, H., eds., Advances in Neural Information Pro-
cessing Systems, volume 33, 1877–1901. Curran Associates,
Inc.
Chen, T.; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Wang,
Z.; and Carbin, M. 2020. The lottery ticket hypothesis for
pre-trained bert networks. Advances in neural information
processing systems, 33: 15834–15846.
Chen, X.; Zhang, Z.; Sui, Y.; and Chen, T. 2021. Gans can
play lottery tickets too. arXiv preprint arXiv:2106.00134.
Dietterich, T. G. 2000. Ensemble Methods in Machine Learn-
ing. In Multiple Classifier Systems.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Evci, U.; Ioannou, Y.; Keskin, C.; and Dauphin, Y. 2022. Gra-
dient flow in sparse neural networks and how lottery tickets
win. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, 6577–6586.
Fedus, W.; Zoph, B.; and Shazeer, N. 2021. Switch trans-
formers: Scaling to trillion parameter models with simple
and efficient sparsity. arXiv preprint arXiv:2101.03961.
Fort, S.; Hu, H.; and Lakshminarayanan, B. 2019. Deep
ensembles: A loss landscape perspective. arXiv preprint
arXiv:1912.02757.
Frankle, J.; and Carbin, M. 2018. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.
Frankle, J.; Dziugaite, G. K.; Roy, D.; and Carbin, M. 2020.
Linear mode connectivity and the lottery ticket hypothesis. In
International Conference on Machine Learning, 3259–3269.
PMLR.

Gale, T.; Elsen, E.; and Hooker, S. 2019. The state of sparsity
in deep neural networks. arXiv preprint arXiv:1902.09574.
Garcı́a-Martı́n, E.; Rodrigues, C. F.; Riley, G.; and Grahn, H.
2019. Estimation of energy consumption in machine learning.
Journal of Parallel and Distributed Computing, 134: 75–88.
Garipov, T.; Izmailov, P.; Podoprikhin, D.; Vetrov, D.; and
Wilson, A. G. 2018. Loss surfaces, mode connectivity, and
fast ensembling of dnns. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems,
8803–8812.
Gustafsson, F. K.; Danelljan, M.; and Schon, T. B. 2020. Eval-
uating scalable bayesian deep learning methods for robust
computer vision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops,
318–319.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Hansen, L. K.; and Salamon, P. 1990. Neural network en-
sembles. IEEE transactions on pattern analysis and machine
intelligence, 12(10): 993–1001.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.
Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J. E.; and
Weinberger, K. Q. 2017. Snapshot ensembles: Train 1, get m
for free. arXiv preprint arXiv:1704.00109.
Ilharco, G.; Wortsman, M.; Gadre, S. Y.; Song, S.; Hajishirzi,
H.; Kornblith, S.; Farhadi, A.; and Schmidt, L. 2022. Patching
open-vocabulary models by interpolating weights.
Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; and
Wilson, A. G. 2018. Averaging weights leads to wider optima
and better generalization. arXiv preprint arXiv:1803.05407.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žı́dek, A.;
Potapenko, A.; et al. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873): 583–589.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems, volume 25. Curran Associates, Inc.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. Advances in neural information processing
systems, 30.
LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard,
R.; Hubbard, W.; and Jackel, L. 1989. Handwritten digit

recognition with a back-propagation network. Advances in
neural information processing systems, 2.
Levin, E.; Tishby, N.; and Solla, S. A. 1990. A statistical
approach to learning and generalization in layered neural
networks. Proceedings of the IEEE, 78(10): 1568–1574.
Liu, S.; Chen, T.; Atashgahi, Z.; Chen, X.; Sokar, G.; Mocanu,
E.; Pechenizkiy, M.; Wang, Z.; and Mocanu, D. C. 2021.
Deep ensembling with no overhead for either training or
testing: The all-round blessings of dynamic sparsity. arXiv
preprint arXiv:2106.14568.
Liu, S.; Chen, T.; Chen, X.; Shen, L.; Mocanu, D. C.; Wang,
Z.; and Pechenizkiy, M. 2022. The unreasonable effective-
ness of random pruning: Return of the most naive baseline
for sparse training. arXiv preprint arXiv:2202.02643.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.
Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; and Kautz, J.
2016. Pruning convolutional neural networks for resource
efficient inference. arXiv preprint arXiv:1611.06440.
Morcos, A.; Yu, H.; Paganini, M.; and Tian, Y. 2019. One
ticket to win them all: generalizing lottery ticket initializa-
tions across datasets and optimizers. Advances in neural
information processing systems, 32.
Mozer, M. C.; and Smolensky, P. 1989. Using relevance to
reduce network size automatically. Connection Science, 1(1):
3–16.
Nagarajan, V.; and Kolter, J. Z. 2019. Uniform convergence
may be unable to explain generalization in deep learning.
Advances in Neural Information Processing Systems, 32.
Neyshabur, B.; Sedghi, H.; and Zhang, C. 2020. What is
being transferred in transfer learning? Advances in neural
information processing systems, 33: 512–523.
Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.;
Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; and Snoek,
J. 2019. Can you trust your model's uncertainty? Evaluat-
ing predictive uncertainty under dataset shift. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox,
E.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.
Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.-
M.; Rothchild, D.; So, D.; Texier, M.; and Dean, J. 2021.
Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350.
Perrone, M. P.; and Cooper, L. N. 1992. When networks dis-
agree: Ensemble methods for hybrid neural networks. Tech-
nical report, BROWN UNIV PROVIDENCE RI INST FOR
BRAIN AND NEURAL SYSTEMS.
Polyak, B. T.; and Juditsky, A. B. 1992. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4): 838–855.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.
Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.;
and Rastegari, M. 2020. What’s hidden in a randomly

weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
11893–11902.
Rame, A.; Kirchmeyer, M.; Rahier, T.; Rakotomamonjy, A.;
Gallinari, P.; and Cord, M. 2022. Diverse Weight Averag-
ing for Out-of-Distribution Generalization. arXiv preprint
arXiv:2205.09739.
Renda, A.; Frankle, J.; and Carbin, M. 2020. Comparing
rewinding and fine-tuning in neural network pruning. arXiv
preprint arXiv:2003.02389.
Ruppert, D. 1988. Efficient estimations from a slowly con-
vergent Robbins-Monro process. Technical report, Cornell
University Operations Research and Industrial Engineering.
Schwartz, R.; Dodge, J.; Smith, N. A.; and Etzioni, O. 2020.
Green ai. Communications of the ACM, 63(12): 54–63.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
nature, 529(7587): 484–489.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Wen, Y.; Tran, D.; and Ba, J. 2020. BatchEnsemble: an Alter-
native Approach to Efficient Ensemble and Lifelong Learning.
In International Conference on Learning Representations.
Wortsman, M.; Ilharco, G.; Gadre, S. Y.; Roelofs, R.; Gontijo-
Lopes, R.; Morcos, A. S.; Namkoong, H.; Farhadi, A.; Car-
mon, Y.; Kornblith, S.; et al. 2022. Model soups: averaging
weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Confer-
ence on Machine Learning, 23965–23998. PMLR.
Yin, L.; Menkovski, V.; Fang, M.; Huang, T.; Pei, Y.; Pech-
enizkiy, M.; Mocanu, D. C.; and Liu, S. 2022. Superposing
Many Tickets into One: A Performance Booster for Sparse
Neural Network Training. arXiv preprint arXiv:2205.15322.
Yu, H.; Edunov, S.; Tian, Y.; and Morcos, A. S. 2019. Play-
ing the lottery with rewards and multiple languages: lottery
tickets in rl and nlp. arXiv preprint arXiv:1906.02768.
Zhang, M.; Lucas, J.; Ba, J.; and Hinton, G. E. 2019. Looka-
head optimizer: k steps forward, 1 step back. Advances in
neural information processing systems, 32.
Zhou, H.; Lan, J.; Liu, R.; and Yosinski, J. 2019. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. Advances
in neural information processing systems, 32.

Results of ImageNet
In this appendix, we compare the performance of Lottery Pools against the original Lottery Tickets on ImageNet and report the
results in Figure1. Overall, we notice a clear performance gain from Lottery Pools over the original LTs at a set of sparsities.

To be specific, by adopting Lottery Pools (Interpolation), we observe up to 0.55% and 0.63% improvements to the original
sparse LTs on ResNet-18 and ResNet-34, respectively. Besides, the constructed stronger dense networks outperform the original
dense ResNet-18 and ResNet-34 by 0.71% and 0.76%, respectively. All these results demonstrated Lottery Pools’ effectiveness
on the large-scale dataset.

10
0.0 80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
69.6

69.9

70.2

70.5

Ac
cu

ac
y

(%
)

ResNet-18

10
0.0 80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
73.5

73.8

74.1

74.4
ResNet-34

0.0 0.2 0.4 0.6 0.8 1.0

Weights Remaining (%)

0.0

0.2

0.4

0.6

0.8

1.0

Original Lottey Tickets
Lottery Pools (Interpotation)

Lottery Pools (Average)
Dense Network

Figure 1: Test accuracy % of original Lottery Tickets and Lottery Pools on ImageNet.
.

Accuracy Heat Map of VGG-16
The accuracy heat map of VGG-16 is reported in Figure 2. Here, we observe a similar pattern to the results of Resnet-18 (Figure 1
in the main paper). First, we notice that rewinding is necessary for performance gain using weight averaging. Secondly, the
averaged subnetwork’s performance highly depends on its parents’ IMP iteration adjacency. The closer IMP iterations two LTs
are from, the better their averaged subnetwork performs. Under rewinding, weight averaging could achieve higher accuracy than
the original LTs subnetwork at the same sparsity level if the parent subnetworks are close enough in IMP iteration.

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

64

66

68

70

72

74

(a) VGG-16 w/ Rewinding

10
0.

0
80

.0
64

.0
51

.2
41

.0
32

.8
26

.2
21

.0
16

.8
13

.4
10

.7 8.
6

6.
9

5.
5

4.
4

3.
5

2.
8

2.
3

1.
8

Weights Remaining (%)

100.0
80.0
64.0
51.2
41.0
32.8
26.2
21.0
16.8
13.4
10.7

8.6
6.9
5.5
4.4
3.5
2.8
2.3
1.8

W
ei

gh
ts

 R
em

ai
ni

ng
 (%

)

15

30

45

60

(b) VGG-16 w/o Rewinding

Figure 2: Accuracy heat map of the averaged LTs on CIFAR-100. Each cell refers to the test accuracy of the averaged subnetworks
using the LTs under the sparsity of X-axis and Y-axis. If the averaged subnetwork decreases in sparsity, we prune it to the higher
sparsity of its parents.

Candidate Interpolation Coefficients
In Table 1, we report the Candidate Interpolation Coefficients used in the main experiments of this work. We apply 12 candidate
coefficient values ranging from 0.05 to 0.95 to enlarge the optimal value searching space. In Table 2, we show the values adopted
in the chapter “Extensive Analysis” of the main paper, where the effect of interpolation coefficient count on Lottery Pools’
performance is studied.

Table 1: Candidate interpolation coefficient in main experiments.
Network Dataset Coefficient Count Coefficient Values

ResNet-18/VGG-16 CIFAR-10/100 11 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
ResNet-18/34 ImageNet 0.6, 0.7, 0.8, 0.9, 0.95

Table 2: Candidate interpolation coefficient in extensive analysis.
Network Dataset Coefficient Count Coefficient Values

ResNet-18/VGG-16 CIFAR-10/100 1 0.5

ResNet-18/VGG-16 CIFAR-10/100 3 0.05, 0.5, 0.95

ResNet-18/VGG-16 CIFAR-10/100 7 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95

Dataset Details
We reported the datasets details, including the number of classes, the size of training, validation and testing sets on CIFAR-10,
CIFAR-100, and ImageNet in Table 3. As there are no publicly available labeled sets for testing in these datasets, we use original
validation sets for testing, split 10% of the training sets as hold-out validation sets, and use the rest of the training sets for training.

Table 3: Datasets Details.
Size of the set used for

Dataset Training Validation Testing Number of classes

CIFAR-10 45,000 5,000 10,000 10
CIFAR-100 45,000 5,000 10,000 100
ImageNet 1,255,167 26,000 50,000 1,000

Lottery Tickets Implementation Details
In Table 4 and Table 5, we report the implementation details of creating Lottery Tickets subnetworks that are used for interpolating
in Lottery Pools. The reported hyperparameters include total training epochs (Epoch), learning rate (LR), batch size (BS),
learning rate drop (LR Drop), weight decay (WD), SGD momentum (Momentum), IMP iteration count, IMP weight pruning
fraction and the rewinding epochs, etc.

Computation resources. The experiments on ImageNet were performed with 4 NVIDIA Tesla A100 GPUs, and the experi-
ments on CIFAR-10/100 were run on a single A100 GPU.

Implementation details on CIFAR-10/100. .

Table 4: Implementation hyperparameters of Lottery Tickets on CIFAR-10/100.

Model Epoch BS LR LR Drop, Epochs Optimizer WD Momentum Warmup (epochs) Rewinding (epochs) IMP iterations (epochs) Pruning Fraction (%)
VGG-16 182 128 0.1 10x, [91, 136] SGD 0.9 1e-4 - 9 19 20

ResNet-18 182 128 0.1 10x, [91, 136] SGD 0.9 1e-4 - 9 19 20

Implementation details on ImageNet.

Table 5: Implementation hyperparameters of Lottery Tickets on ImageNet.

Model Epoch BS LR LR Drop, Epochs Optimizer WD Momentum Warmup (epochs) Rewinding (epochs) IMP iterations (epochs) Pruning Fraction (%)
ResNet-18 90 1024 0.4 10x, [30, 60, 80] SGD 0.9 1e-4 5 5 9 20
ResNet-34 90 1024 0.4 10x, [30, 60, 80] SGD 0.9 1e-4 5 5 9 20

Algorithm of Lottery Pools (Average)
When applying a fixed interpolation value of 0.5 instead of the searched optimal one within the Candidate Coefficient Pools, the
Lottery Pools (Interpolation) turns into its variant, the Lottery Pools (Average) that is described in Algorithm 3.

Lottery Pools (Interpolation) tends to achieve better performance than Lottery Pools (Average) by using the searched optimal
value for interpolating, while Lottery Pools (Average) is benefited from efficiency due to simple averaging.

Algorithm 3: Lottery Pools Average Recipe

Input: The original learned sparse subnetwork θ̃t from LTs, Candidate Lottery Pools St = {θ̃t-1, θ̃t+1, θ̃t+2, · · · }, The averaged
subnetwork θ̃Inter during greedy search.
Output: Final averaged subnetwork θ̃best that has the same sparsity with θ̃t.

1: St ← {θ̃t-1, θ̃t+1, θ̃t+2, · · · } . Create Candidate Lottery Pools, and sort all candidates by their adjacence to θ̃t

2: θ̃best ← θ̃t

3: for θ̃i ∈ St do . Greedily search the candidate LTs subnetworks for averaging
4: θ̃Inter ← MagnitudePruning

(
θ̃best+θ̃i

2

)
.Average

5: if ValAcc
(
θ̃Inter

)
≥ ValAcc

(
θ̃best

)
6: then θ̃best ← θ̃Inter .Update the best averaged subnetwork
7: end for

Results Tables
Here we report the performance details of Lottery Pools, EMA, SWA and original Lottery tickets on CIFAR-10/100 in Table 6
and Table 7. The performance details on ImageNet are reported in Table 8. We apply the decay factor of 0.95 in EMA. For a
fair comparison, EMA and SWA are modified by pruning the interpolated models to the sparsity of the original LHs during
interpolating. The reported accuracy on CIFAR-10/100 is averaged over 3 independent runs, while we only run the experiments
on ImageNet once due to the limited resources.

Compared with the original LTs, Lottery Pools achieves universal performance improvements at all sparsity levels on both
ImageNet and CIFAR-10/100 datasets. Compared with the other two baselines (SWA and EMA), our Lottery Pools outperforms
these baselines in all cases on ImageNet, and in most cases (60/76) on CIFAR-10/100.

Table 6: Accuracy (%) of Lottery Pools, the original Lottery Tickets, EMA and SWA on CIFAR-10/100 (1).

Dataset Network Method Weights Remaining%

100 80 64 51.20 40.96 32.77 26.21 20.97 16.78

CIFAR-100 VGG-16

Lottery Pools (interpolation) 73.32±0.22 73.18±0.38 72.82±0.17 73.27±0.26 73.13±0.38 73.04±0.20 73.32±0.24 73.35±0.16 73.23±0.13
Lottery Pools (Average) 73.14±0.30 73.11±0.33 72.68±0.34 72.80±0.30 72.93±0.29 72.96±0.35 72.97±0.45 72.98±0.18 73.16±0.04

SWA 73.14±0.34 73.15±0.33 73.13±0.33 73.15±0.32 73.23±0.24 73.26±0.25 73.32±0.27 73.44±0.30 73.48±0.13
EMA (0.95) 72.23±0.29 72.40±0.21 72.70±0.13 73.05±0.17 72.93±0.22 73.20±0.38 73.23±0.18 73.37±0.23 73.34±0.05
Original LTs 71.63±0.19 71.30±0.27 71.58±0.17 71.65±0.23 71.53±0.37 71.77±0.19 71.79±0.25 71.88±0.30 71.91±0.18

CIFAR-100 ResNet-18

Lottery Pools (interpolation) 75.67±0.30 75.54±0.20 75.53±0.25 75.74±0.23 75.77±0.12 75.82±0.23 75.97±0.21 75.69±0.18 75.42±0.07
Lottery Pools (Average) 75.65±0.13 75.58±0.11 75.44±0.33 75.68±0.18 75.65±0.28 75.34±0.29 75.32±0.18 75.58±0.07 75.31±0.12

SWA 75.60±0.06 75.62±0.05 75.62±0.06 75.60±0.08 75.71±0.06 75.72±0.09 75.71±0.15 75.68±0.12 75.58±0.24
EMA (0.95) 74.49±0.19 74.98±0.05 75.14±0.13 75.28±0.05 75.50±0.28 75.54±0.10 75.61±0.17 75.66±0.10 75.59±0.23
Original LTs 73.45±0.27 73.82±0.06 73.84±0.07 74.12±0.24 74.24±0.23 74.32±0.27 74.31±0.20 74.34±0.15 74.35±0.22

CIFAR-10 VGG-16

Lottery Pools (interpolation) 93.76±0.18 93.90±0.14 93.97±0.04 93.88±0.03 93.83±0.04 94.01±0.15 94.03±0.14 94.11±0.03 93.98±0.11
Lottery Pools (Average) 93.74±0.19 93.95±0.13 94.09±0.15 94.01±0.14 93.89±0.16 93.92±0.05 93.79±0.18 94.04±0.08 94.04±0.09

SWA 94.01±0.06 94.01±0.07 94.01±0.06 94.00±0.06 94.02±0.08 94.00±0.02 94.01±0.05 94.07±0.07 94.08±0.12
EMA (0.95) 93.65±0.10 93.76±0.14 93.76±0.16 93.66±0.07 93.98±0.09 93.88±0.13 94.00±0.04 93.98±0.07 93.97±0.06
Original LTs 93.14±0.11 92.98±0.25 93.14±0.15 93.10±0.14 93.21±0.10 93.25±0.23 93.25±0.08 93.37±0.16 93.31±0.04

CIFAR-10 ResNet-18

Lottery Pools (interpolation) 94.95±0.22 95.09±0.11 94.97±0.10 94.90±0.22 94.94±0.22 95.16±0.07 95.07±0.11 95.05±0.08 95.16±0.10
Lottery Pools (Average) 95.06±0.07 95.02±0.11 95.04±0.17 95.10±0.06 95.07±0.10 95.09±0.07 95.07±0.10 95.03±0.06 94.93±0.20

SWA 94.97±0.07 94.97±0.07 94.96±0.07 94.97±0.06 94.98±0.06 95.05±0.06 95.05±0.06 95.03±0.10 95.05±0.10
EMA (0.95) 94.61±0.17 94.76±0.09 94.76±0.11 94.88±0.12 94.92±0.04 94.98±0.07 95.00±0.13 95.00±0.09 95.05±0.08
Original LTs 94.23±0.21 94.04±0.05 94.26±0.21 94.44±0.12 94.33±0.22 94.39±0.27 94.48±0.03 94.52±0.12 94.43±0.00

Table 7: Accuracy (%) of Lottery Pools, the original Lottery Tickets, EMA and SWA on CIFAR-10/100 (2).

Dataset Network Method Weights Remaining%

13.42 10.74 8.59 6.87 5.50 4.40 3.52 2.81 2.25 1.80

CIFAR-100 VGG-16

Lottery Pools (interpolation) 73.21±0.10 73.14±0.26 73.27±0.20 73.16±0.23 72.79±0.16 72.62±0.27 72.38±0.59 72.20±0.31 71.41±0.42 70.89±0.37
Lottery Pools (Average) 73.04±0.18 72.81±0.06 73.01±0.30 72.85±0.22 72.75±0.11 72.47±0.22 72.06±0.40 72.10±0.52 71.35±0.40 70.08±0.06

SWA 73.35±0.25 73.12±0.28 72.92±0.24 72.39±0.13 71.81±0.14 71.02±0.28 69.99±0.22 68.57±0.36 66.41±0.25 62.95±0.17
EMA (0.95) 73.28±0.15 73.20±0.19 72.95±0.36 72.66±0.14 72.12±0.23 71.76±0.18 71.49±0.23 70.54±0.14 69.57±0.17 67.38±0.27
Original LTs 71.68±0.34 72.03±0.32 71.73±0.26 71.83±0.08 71.87±0.24 71.40±0.16 71.57±0.30 71.24±0.31 71.14±0.25 70.08±0.06

CIFAR-100 ResNet-18

Lottery Pools (interpolation) 75.58±0.24 75.36±0.10 75.19±0.11 74.91±0.22 74.74±0.10 74.03±0.22 73.73±0.15 73.70±0.34 73.11±0.07 72.57±0.17
Lottery Pools (Average) 75.13±0.46 75.11±0.09 75.05±0.24 74.59±0.25 74.33±0.24 73.98±0.19 73.72±0.09 73.23±0.17 73.03±0.18 72.54±0.05

SWA 75.49±0.33 75.25±0.22 75.06±0.15 74.48±0.07 73.86±0.18 73.20±0.06 72.07±0.05 70.49±0.11 68.36±0.18 64.39±0.32
EMA (0.95) 75.52±0.26 75.41±0.09 75.22±0.04 74.81±0.07 74.25±0.13 73.88±0.19 73.42±0.12 72.55±0.21 71.55±0.12 70.12±0.29
Original LTs 74.40±0.08 74.28±0.20 74.14±0.06 73.93±0.16 73.80±0.12 73.69±0.05 73.35±0.27 73.00±0.44 72.80±0.17 72.30±0.12

CIFAR-10 VGG-16

Lottery Pools (interpolation) 94.06±0.06 94.06±0.05 94.09±0.11 94.06±0.14 94.05±0.14 93.98±0.07 93.97±0.09 93.89±0.10 93.88±0.09 93.88±0.09
Lottery Pools (Average) 93.97±0.15 93.99±0.08 94.05±0.14 94.03±0.06 94.02±0.11 93.85±0.05 93.96±0.17 93.94±0.07 93.78±0.16 93.77±0.18

SWA 94.11±0.07 94.03±0.05 94.02±0.04 93.97±0.08 93.86±0.08 93.72±0.08 93.53±0.20 93.20±0.15 92.62±0.06 92.07±0.06
EMA (0.95) 93.95±0.06 93.99±0.07 94.06±0.16 93.90±0.02 93.94±0.06 93.80±0.18 93.64±0.07 93.46±0.14 93.32±0.15 93.05±0.13
Original LTs 93.26±0.05 93.13±0.07 93.54±0.04 93.31±0.13 93.37±0.15 93.41±0.02 93.44±0.19 93.38±0.02 93.38±0.09 93.28±0.04

CIFAR-10 ResNet-18

Lottery Pools(interpolation) 95.01±0.12 95.10±0.14 95.09±0.14 95.08±0.04 94.97±0.11 94.86±0.09 94.81±0.10 94.70±0.12 94.63±0.14 94.39±0.04
Lottery Pools (Average) 94.91±0.14 94.91±0.12 95.01±0.11 94.82±0.13 94.93±0.08 94.80±0.21 94.71±0.14 94.68±0.10 94.51±0.14 94.43±0.08

SWA 94.98±0.10 95.03±0.11 95.08±0.10 94.95±0.10 94.87±0.07 94.79±0.08 94.59±0.18 94.28±0.14 93.96±0.20 93.28±0.53
EMA (0.95) 95.06±0.15 95.09±0.08 94.97±0.13 95.01±0.04 94.91±0.08 94.83±0.09 94.73±0.20 94.58±0.11 94.34±0.18 93.99±0.24
Original LTs 94.54±0.23 94.52±0.12 94.50±0.13 94.53±0.08 94.49±0.14 94.38±0.15 94.31±0.13 94.32±0.15 94.13±0.25 94.11±0.23

Table 8: Accuracy (%) of Lottery Pools, the original Lottery Tickets, EMA and SWA on ImageNet.

Dataset Network Method Weights Remaining%

100 80 64 51.2 40.96 32.77 26.21 20.97 16.78

ImageNet ResNet-18

Lottery Pools (interpolation) 70.68 70.68 70.70 70.73 70.64 70.57 70.34 70.04 69.68
Lottery Pools (Average) 69.96 70.13 70.62 70.63 70.51 70.53 70.20 69.97 69.63

SWA 69.60 69.60 69.60 69.48 69.34 69.09 68.36 67.69 66.46
EMA (0.95) 68.36 68.36 68.35 68.36 68.35 68.36 59.74 52.56 43.99
Original LTs 69.96 70.13 70.33 70.42 70.47 70.48 70.20 69.97 69.63

ImageNet ResNet-34

Lottery Pools (interpolation) 74.36 74.36 74.39 74.32 74.26 74.23 74.15 73.99 73.58
Lottery Pools (Average) 73.61 74.17 74.19 74.20 74.22 74.17 74.01 73.95 73.53

SWA 73.56 73.75 73.76 73.80 73.75 73.51 73.25 72.45 71.41
EMA (0.95) 72.50 72.51 72.50 72.50 72.50 72.53 63.91 57.83 49.33
Original LTs 73.61 73.73 73.86 74.01 74.05 73.91 74.01 73.95 73.53

